
dpcode V3.05.0

1

POSTFLOW

POSTFLOW is a tool for extracting data from a DPLR restart file and formatting it appropriately
for presentation or further post-processing. POSTFLOW is a data-extractor only, it does not
perform any data visualization. However, POSTFLOW does include some rather powerful
options that simplify the data-extraction process and ensure that the user can quickly obtain
exactly the data they need in the format they want from a given simulation.

When the restart file is generated by the CFD code, all CFD input deck flags and physical
modeling parameters that were used in the simulation are written to the restart file. These flags
are not read by DPLR2D or DPLR3D on input, but they are read by POSTFLOW when the
restart file is processed. In this manner, the user is ensured that the data are post-processed in a
manner consistent with the way in which the data were generated. The original CFD input and
physical modeling database files are never read by POSTFLOW, and need not be present in
order to do post-processing. Therefore, even if the CFD input deck or any of the physical
properties databases are later changed or lost, the user can always extract physically consistent
data from the restart file.

Although the format of the restart file changes occasionally (possible format changes are
signaled by a change in the minor release number of the code), backward compatibility is always
maintained. The version of DPLR that was used to run the simulation is also written to the restart
file, and POSTFLOW will detect this version when post-processing. If POSTFLOW is used to
process a restart file from an older version of the package, an informational message will be
output to the screen, but otherwise POSTFLOW will function normally.

Running POSTFLOW

POSTFLOW is run from the command line. The user first prepares the input deck, either by
starting from a similar case or by following the rules discussed in the following section. In order
to execute the run, type:

postflow < post.inp

at the command line, where “post.inp” is the name of the input deck. When POSTFLOW is
executed diagnostic output will be echoed to the screen in order to provide feedback on the
action(s) being performed. Any warning messages will also be echoed to the screen. If a fatal
error is detected during execution, a descriptive message will be echoed to the screen and
execution will terminate. POSTFLOW always runs in serial on a single processor, regardless of
the number of processors that were used to run the simulation. However, it can easily be
compiled to run within MPI if required for the destination machine.

The sample input deck presented in the following section replicates that for one of the sample
problems (“Neptune”) provided with this distribution. When POSTFLOW is executed on this
sample problem, the output is:

dpcode V3.05.0

2

 postflow
 NASA Ames Version 3.05.0
 Mike Wright last modified: 04/07/06

 restart file format: NASA Ames Version 3.05.0
 solution run at: Fri Mar 31 08:31:34 2006

 run in 700 iterations in 5.00E+03 seconds

 CPP-macro settings enabled during run:
 PARKTEXP=0.50

 input ns = 3; nev = 1
 number of blocks = 2
 file dimension = 3

 extracting the following BCs : 19
 note that extraction of pointwise BCs not supported yet

 output variables=x,y,z,p,T,M,res

 running in high memory mode

 interpolating grid to cell centers

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9

 block # 1: nx = 32; ny = 16; nz = 64
 zone t=BC19 i= 34 j= 1 k= 66

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9

 block # 2: nx = 48; ny = 64; nz = 64
 zone t=BC19 i= 50 j= 1 k= 66

 zone t=BC19 i= 50 j= 1 k= 66

 writing tecplot file: neptune.plt

 using grid file: neptune.pgrx
 using flow file: neptune.pslx

dpcode V3.05.0

3

As can be seen, the screen output provides a step-by step discussion of the actions performed
during execution, and can be used to ensure that the actions performed match those desired.

Sample Input Deck

A sample input deck for POSTFLOW is shown below. A brief description of each of the flags,
along with allowable settings, is provided in the following section. Detailed discussions of some
of the more complex options follow. Additional examples of POSTFLOW input decks can be
found in the sample problems that are distributed with the DPLR package; it is recommended
that the user run through each of the provided examples after reading this chapter and examine
the output of POSTFLOW for each case.

Input file for postflow

imemmode itruev
 2 1

inrest ingrid inbcf ouform iwrtd
 11 0 0 6 0

interp nzones isep istyp
 1 10 0 1

lref aref xmc ymc zmc imrx imry imrz
 1.0 1.0 0.0 0.0 0.0 0 1 0

iwind cxs cys czs
 0 1.0 0.0 0.0

iexbc <== list of BC numbers to extract from dataset
 19,26

ivarp <== list of variable numbers to extract from dataset
 0 110 120 154 999

Tecplot/plot3d zone information:
iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
0, 0, 1, -1, 1, -1, 1, -1, 1, -1 'flow2d'
-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

fname,pname,(gname),(bname)
'neptune'
'neptune'

dpcode V3.05.0

4

Summary of Input Flags

Input flags will be described in the order in which they appear in the input deck. A full
description of some of the more complex option will be deferred until later sections.

Some of the flags presented below are present for future expansion of the capabilities of
POSTFLOW and are not currently used. These will be indicated as they appear.

 imemmode

POSTFLOW has been written to run efficiently for large problems. One of the
ways in which this efficiency is achieved is by reading the entire set of stored
variables into memory for a given physical grid block. This data is then processed
and a subset is extracted based on the user's preferences. Since POSTFLOW is a
serial code, an obvious consequence of this is that the machine on which the post-
processing is done must have sufficient memory to hold all flow variables for the
largest physical block in the simulation. There are certain cases when the
available memory is not sufficient. In this case, a low memory mode is available,
in which the flow variables are read one at a time, processed individually, and
then purged from memory before continuing to the next variable. This requires
much less memory, but it can take significantly longer. In addition, when this low
memory mode is used, certain features, such as exact viscous fluxes (see below),
are not available. POSTFLOW will issue a warning message when low memory
mode is selected and a requested feature is not compatible. It is recommended that
high memory mode be used whenever possible. Possible values for imemmode
are:

 1 low memory mode
 2 high memory mode (recommended)

 itruev

Derivative-based quantities (such as skin friction or heat transfer) can be
computed either using an accurate second-order central differenced discretization
of the Navier-Stokes flux terms (equivalent to the method used in DPLR, see
Section XX of the Reference Manual for more information) or with a “quick-and-
dirty” first-order approximation. For example, a first-order approximation for the
convective component of the heat flux at a non-catalytic surface is given by:

!

q ="#T ="
$T

$%
 (1)

dpcode V3.05.0

5

where η is the distance from the first cell center away from the wall to the face
center on the wall itself. The simple expression above assumes that the body-
normal grid lines are truly orthogonal to the surface; a slight generalization must
be applied to account for any non-orthogonality:

!

q ="
#T

#$
cos(90 %&) (2)

where β is the local angle (in degrees) between the grid lines normal and parallel
to the body surface. Note that Eq. (2) reduces to Eq. (1) if the grid lines are truly
orthogonal (β = 90°). Similar expressions can be constructed for all other
derivative based quantities. For most applications the difference between the
accurate and approximate calculation of these derivative based quantities is very
small (on the order of 1% or less), and either method is acceptable. However, it is
preferred to use the exact representation of these values (itruev = 1) whenever
possible for consistency with the CFD code. It should be noted that when post-
processing in low memory mode (imemmode = 1), extraction of the true
derivatives is not possible, and POSTFLOW will automatically set itruev = 0
and echo a warning message to the screen in this case. Possible values for
itruev are:

 0 evaluate derivatives using a 1st–order approximation
 1 evaluate derivatives using accurate 2nd–order expressions

 inrest

Specify the format of the restart file. This can be any of the formats written by
DPLR, summarized here:

 1 parallel archival file (native unformatted)
 11 parallel archival file (XDR format)
 21 parallel archival file (ASCII)

See Appendix A for a complete list and description of the various file formats
supported by the DPLR software package.

 ingrid

Specify the format of the grid file. This can be any of the formats usable by
DPLR, with values as given above for inrest. In addition (and preferably), the
user can specify ingrid = 0, which tells POSTFLOW that the format and name
of the grid file should be determined by reading the pertinent information from

dpcode V3.05.0

6

the restart file. Using ingrid = 0 helps to ensure consistency when post-
processing a dataset. The user is ensured that the grid file being used to post-
process the data is the same as the one used to generate the data in the first place.
However, if the name of the grid file, or its location relative to the restart file, is
ever changed, this method will not work. In this case, the user can still specify the
correct grid file by setting the appropriate value for ingrid. At this time,
POSTFLOW does not perform any internal consistency checks (such as
computation of a checksum) to ensure that the grid file used to post-process data
is identical to that used to generate the data in the first place. Possible settings of
ingrid are:

 0 get format from restart file
 1 parallel archival file (native unformatted)
 11 parallel archival file (XDR format)
 21 parallel archival file (ASCII)

 inbcf

Specify the format of the boundary condition (BC) file, if any. This can be any of
the formats usable by DPLR, or can be set to zero, indicating (as with ingrid
above), that the format and name of any required BC file are to be determined
from the restart file. POSTFLOW will determine whether a BC file is required by
polling the restart file. If no BC file was used during the simulation one is not
required for post-processing, and the value of inbcf is ignored. Possible settings
of inbcf are:

 0 get format from restart file
 1 parallel archival file (native unformatted)
 11 parallel archival file (XDR format)
 21 parallel archival file (ASCII)

 ouform

Specify the desired format of the output data. Possible settings of ouform are:

 2 plot3d grid or q-file (native unformatted)
 3 plot3d grid or function file (native unformatted)
 5 Tecplot block binary
 6 Tecplot point binary
 7 compute max/min values for variables and output to STDOUT
 8 sum variables over given surface(s) and output to STDOUT
 9 RESERVED
 10 print selected freestream quantities to STDOUT

dpcode V3.05.0

7

 11 output datasets for Moment calculations
 17 compute max/min & maxloc/minloc and output to STDOUT
 18 print a list of NaN locations to STDOUT
 22 plot3d grid or q-file (ASCII)
 23 plot3d grid or function file (ASCII)
 25 Tecplot block ASCII
 26 Tecplot point ASCII
 32 gzipped plot3d grid or q-file (ASCII)
 33 gzipped plot3d grid or function file (ASCII)
 110 print freestream quantities to STDOUT in tabular format

Several of these options require more discussion, which is provided in subsequent
sections. The primary output formats for datasets to be written for further post-
processing (with Tecplot®, FAST, or another post-processing tool), are the plot3d
and Tecplot formats listed above (ouform = 2:6, 22:26, and 32:33).

 iwrtd

One of the more powerful features of POSTFLOW is the ability to recreate usable
CFD input and physical data decks directly from the restart file. This is because,
in addition to the pointwise flow data stored in this file, a section of the file is
used to store all of the flags read from the CFD input deck and all of the physical
modeling coefficients used to perform the simulation. Because of this, it is always
possible to determine the settings and physical constants used to generate the
simulation, even if the CFD input deck has been altered or misplaced. Setting
iwrtd = 1 will cause POSTFLOW to create a subdirectory named
“INPUTDECKS” in the current working directory. After the POSTFLOW run is
complete this directory will contain a reconstruction of the CFD input deck that
was used to run the simulation, as well as all of the physical property data decks
read during execution. These files contain only the data actually used during the
simulation (for example, physical properties for CO2 will not appear in this
reconstructed deck unless CO2 was one of the species being modeled in the
simulation). However, these files are formatted correctly, and can be directly used
to conduct further simulations if desired. Input deck reconstruction can be
performed in concert with any of the other options in POSTFLOW. Although
POSTFLOW is capable of processing restart files generated by previous versions
of DPLR, the CFD input deck will always be generated in the current format. If
desired, the utility dpconvert can be used to change the format of the input deck
after it is created. See Appendix U for more information on the use of dpconvert.
Possible settings of iwrtd are:

 0 do not reconstruct input decks
 1 reconstruct input decks

dpcode V3.05.0

8

 interp

This flag controls the way cell-centered finite-volume flow data is represented on
a node-centered grid. Three methods are provided in POSTFLOW:

 0 move flow data to the lower-left cell
 1 interpolate grid points to cell centers
 2 interpolate flow data to grid points
 11 interpolate grid points to cell centers; no boundary points
 21 interpolate grid points to cell centers; even at boundaries

The simplest choice is to simply move the cell-centered data to the "lower-left"
grid point (interp = 0). No interpolation of the flow data or the grid is
performed. This is not generally a desirable option, since the output data are
slightly distorted and boundary data are presented incorrectly, but is provided for
compatibility with heritage codes.

The second option is to generate a cell-centered grid and add additional face-
centered points along the boundaries (interp = 1). In this option the flow
quantities are not interpolated in the interior of the grid, and thus distortion of the
output data is held to a minimum. However, flow properties are interpolated to the
face centers along the boundaries in order to correctly reproduce face-centered
boundary conditions. In this option the output data size defaults to the number of
cells in a computational direction, plus two points in each direction representing
the points added along the boundaries. When using this option it is important to
remember that the output grid points lie at the cell centers of the original CFD
grid, and thus the output grid cannot be used to run further CFD simulations.

The third interpolation option preserves the location of the CFD grid points and
interpolates the finite-volume data onto these mesh points (interp = 2). This
option is best when it is important that the locations of the CFD grid points be
preserved in the output dataset. One example when this is important is when the
output data is to be processed in SAGe or OutBound in order to move the outer
boundary of the grid or adapt the grid to the computed flowfield.

The fourth interpolation option (interp = 11) is identical to interp = 1
discussed above, except that additional points are not added at the block
boundaries. The maximum output dimensions using this option is the number of
cells in each computational direction. When using this option it is important to
note that the output grid will have “holes” in it along block boundaries, since no
output is generated at the boundary itself. This output format is primarily used for
computing integrated forces and moments, or for outputting pointwise forces for
later offline integration.

dpcode V3.05.0

9

The fifth interpolation option (interp = 21) is also identical to interp = 1
discussed above, except that in this case even the points at the boundaries are
located using cell-centered interpolation. The maximum output dimensions using
this option is the number of cells in each computational direction, plus two points
in each direction representing the points added within the boundaries. This option
is seldom used in practice; its primary purpose is for code developers to gain
access to the cell centered values of quantities in the grid dummy cells (rather
than the face-centered values available using interp = 1) for debugging
purposes.

 nzones

This is an integer that specifies the maximum number of output data zones to be
generated. This is primarily a holdover from pre-F90 days and is used by the code
to size certain output arrays. For most problems setting nzones equal to a
moderate number such as 20 should suffice. If the value is too small, the program
will abort and an error message will be generated prompting the user to increase
the value.

 isep

This flag controls whether multiple output datasets are to be written to a single or
multiple files. Possible settings of isep are:

 0 all active output datasets are written to a single file
 1 each active output dataset is written to its own file

 istyp

This flag is provided for future expansion and currently is not used in
POSTFLOW.

 lref

This is the reference length, used only for the normalization of moment
coefficients. The extraction of moments and moment coefficients can either be
performed directly in POSTFLOW or via an included utility program Moment.
The value of lref is passed to Moment in this case.

 aref

dpcode V3.05.0

10

This is the reference area, used only for the normalization of force and moment
coefficients.

 xmc,ymc,zmc

These define the xyz position of the moment reference center, used for extracting
moments and moment coefficients.

 imrx,imry,imrz

These flags are used to define symmetries in the simulation. This is useful in the
computation of integrated forces and moments. For example, if a simulation is
performed of a bilaterally symmetric vehicle at angle of attack, but with zero
sideslip, it is typical to simulate 1/2 of the vehicle. By taking advantage of this
bilateral symmetry the solution can be obtained with half of the grid points
required for the full simulation. By definition such a vehicle will have zero net
side force, since the total side force on the portion of the vehicle that is simulated
will be exactly balanced by an equal and opposite force on the other half.
However, when extracting force and moment coefficients from the simulation, it
is necessary to provide this information to POSTFLOW in order for the resultant
forces to be computed correctly. This is done through the use of the imrx, imry,
and imrz flags, which define plane(s) of symmetry in the simulation. Currently
supported are bilateral (any one of imrx, imry, or imrz are non-zero), and
quadrilateral (two non-zero components) symmetry, where the axes of symmetry
are aligned with the coordinate axes. If the symmetry of the vehicle is more
complex than this, the user must set all of imrx, imry, and imrz to zero and
compute the symmetry relations off line after post-processing is complete. Each
of the symmetry flags can either be set to 1 (enforce symmetry about this plane),
or 0 (do not enforce symmetry). The possible planes of symmetry are defined as:

 imrx → body is symmetric about the yz-plane
 imry → body is symmetric about the xz-plane
 imrz → body is symmetric about the xy-plane

As an example of the function of these symmetry flags, consider a vehicle
oriented in standard aircraft coordinates that is symmetric about the xz-plane. By
setting imry = 1, POSTFLOW will first compute any requested forces. If
integrated forces or moments are requested as output (ouform = 8), POSTFLOW
will perform the integration, double the computed value of the forces in the x and
z directions, and zero the value in the y-direction. The final integrated force or
moment output will then be accurate for the entire vehicle, even though only half
of the vehicle was simulated. Note that if force or moment coefficients are

dpcode V3.05.0

11

requested as output it is important to use the full reference area when normalizing
these computed forces if the symmetry flags are used.

All three of the symmetry flags are valid for 3D flows, and none are valid for
axisymmetric flows. Since a 2D flow is assumed to lie in the xy-plane in DPLR,
imrz has no meaning for a 2D flow simulation.

 iwind

This flag is used to define a global “wind” axis for output. Possible values of
iwind are:

 0 do not alter the raw output data
 1 determine sign by a dot product with freestream vector
 2 determine sign by a dot product with supplied wind vector

The global wind axis is used either to determine the sign of the output skin
friction (shear stress) or to convert output forces into a wind-based (lift and drag)
coordinate system. Unless one of these outputs is requested as output the input
value of iwind will be ignored. The orientation of the wind vector for iwind =
2 is defined using the cxs, cys, and czs flags defined below.

 cxs,cys,czs

Defines the “cosines” of the global wind axis in the xyz directions when iwind =
2. These are defined as unit metrics, such that

 cxs2 + cys2 + czs2 = 1

Input values are always normalized to ensure that this expression is valid.

 iexbc

Integer array that defines one or more surface zones to extract from the dataset.
iexbc is a comma or space separated list of valid boundary condition (BC)
numbers. See Section XX of the DPLR Users Manual for a listing of the valid BC
numbers in DPLR. When POSTFLOW is run, any valid BC numbers specified by
the iexbc flag will automatically be extracted from the dataset. If multiple
instances of the BC number(s) exist, the resulting data will be saved as separate
blocks (for plot3d output) or zones (for Tecplot® output). These zones will either
be concatenated together into a single file or stored as separate files, depending on
the setting of the isep flag. If Tecplot output is specified, output zones will be

dpcode V3.05.0

12

named according to the BC number extracted, eg “BC14”. Surface extraction can
be used in conjunction with or instead of zone specification extraction, defined
below. Surface extraction is a quick, foolproof, and easy method to extract
defined surfaces from a complex multiblock grid, and should be used whenever
possible to simplify the extraction process. Note that at the current time surface
extraction cannot be used to extract surfaces that are defined with pointwise
boundary conditions in an input BC file, although you can choose to extract all
pointwise boundaries by setting iexbc = 0. If surface extraction is not desired,
iexbc should be set to –1, which disables this feature. See below for more
information on ways of extracting data using POSTFLOW.

 ivarp

Integer array that defines the flow variables to be extracted from the restart file.
This array is expressed as a comma or space separated string of integers
representing the desired flow variables. Where possible, standard plot3d (or
GASP®) variable numbers are used to represent flow quantities, although
POSTFLOW allows extraction of a considerable superset of the variables
available in PLOT3D or GASP.

Not all variables can be extracted in all circumstances. For instance, the w-
component of the velocity vector cannot be extracted from a 2D or axisymmetric
flowfield and the coefficient of viscosity cannot be extracted from an Euler
simulation. If a variable is selected for extraction that is not permitted, it will be
removed from the variable list automatically by POSTFLOW, and an
informational message will be echoed to the screen. Each output variable also has
a unique character representation, indicated below in parenthesis. This
representation is used to name the variables when Tecplot or freestream output
datasets are specified. Note that character representations are case-independent for
compatibility with Tecplot.

POSTFLOW also permits a “shorthand” notation that allows the extraction of
several related variables with a single number. For example, selecting ivarp =
1000 instructs POSTFLOW to output species densities for all species in the
simulation. In all cases when shorthand notation is used only those variables
relevant to the current case will be extracted. For example, the shorthand ivarp
= 0 will automatically extract x, y, and z for a 3D flow, but only x and y for a 2D
or axisymmetric flow. All of these “shorthand” selections are indicated below.

All extracted variables are output in SI units. Variable numbers listed as
“RESERVED” below are not currently implemented in POSTFLOW, but have
been allocated for future expansion. Entries prefaced with an asterisk (*) in the
list below are defined as surface-specific quantities. These quantities are extracted
with respect to a given surface direction, defined either with the ifac flag in the

dpcode V3.05.0

13

zone specifications (see below), or automatically determined when extracting
surfaces with iexbc. Possible values for ivarp are given below in list form
grouped by category; see Appendix P for a more detailed description of many of
the variables.

 Grid Coordinates

 0 all grid coordinates
 1 x-coordinate (x)
 2 y-coordinate (y)
 3 z-coordinate (z)

 Grid-Related Variables

 10 all path-lengths
 11 path length along grid lines in i-direction (si)
 12 path length along grid lines in j-direction (sj)
 13 path length along grid lines in k-direction (sk)
 14 *unit outward normal x-direction cosine (sx)
 15 *unit outward normal y-direction cosine (sy)
 16 *unit outward normal z-direction cosine (sz)

 21 *body normal distance (dn)
 22 *deviation from orthogonality [deg.] (dev)
 23 *face area (Area)
 25 maximum cell aspect ratio (CAR)

 Mixture Transport Properties

 50 total viscosity (mu)
 51 total kinematic viscosity (nu)
 52 total translational thermal conductivity (kap)
 53 total rotational thermal conductivity (kapr)
 54 total vibrational thermal conductivity (kapv)
 55 free electron thermal conductivity (kape)
 56 total binary diffusion coefficient (D)
 57 mixture mean free path (mfp)
 58 unit Reynolds number (Re/L)
 59 cell Reynolds number (Re_c)

 Thermodynamic Properties

 60 ratio of frozen specific heats cp/cv (G)

dpcode V3.05.0

14

 61 frozen specific heat at constant volume (cv)
 62 frozen specific heat at constant pressure (cp)
 63 translational specific heat at constant volume (cvt)
 64 rotational specific heat at constant volume (cvr)
 65 vibrational specific heat at constant volume (cvv)
 66 electronic specific heat at constant volume (cve)
 68 mixture gas constant (R)
 69 mixture molecular weight (Mw)

 Turbulence Quantities

 70 turbulent kinetic energy (TKE)
 71 turbulent omega (omega_t)
 72 RESERVED
 73 RESERVED
 75 Spalart-Almaras conserved variable (mu_SA)

 Laminar Transport Properties

 80 laminar viscosity (mu_l)
 81 laminar kinematic viscosity (nu_l)
 82 laminar thermal conductivity (kap_l)
 83 laminar rotational thermal conductivity (kapr_l)
 84 laminar vibrational thermal conductivity (kapv_l)
 85 laminar free electron thermal conductivity (kape_l)
 86 laminar binary diffusion coefficient (D_l)
 87 laminar Lewis number (Le)
 88 laminar Schmidt number (Sc)
 89 laminar Prandtl number (Pr)

 Turbulent Transport Properties

 90 turbulent eddy viscosity (mu_t)
 91 turbulent kinematic eddy viscosity (nu_t)
 92 turbulent thermal conductivity (kap_t)
 93 turbulent rotational thermal conductivity (kapr_t)
 94 turbulent vibrational thermal conductivity (kapv_t)
 95 turbulent free electron thermal conductivity (kape_t)
 96 turbulent binary diffusion coefficient (D_t)
 97 turbulent Lewis number (Le_t)
 98 turbulent Schmidt number (Sc_t)
 99 turbulent Prandtl number (Pr_t)

 Mixture Flow Properties

dpcode V3.05.0

15

Stagnation quantities (density, pressure, and temperature) are
computed assuming isentropic relations, and thus are not valid for
a chemically reacting flowfield.

 100 mixture density (rho)
 101 mixture number density (N_tot)
 102 stagnation mixture density (r_o)

 110 pressure (p)
 111 dynamic pressure (Q)
 112 stagnation pressure (p_o)
 113 Pitot pressure (p_pitot)
 114 pressure coefficient (C_p)

 120 translational temperature (T)
 121 bulk temperature (T_b)
 122 stagnation temperature (T_o)
 124 rotational temperature (Tr)
 125 vibrational temperature (Tv)
 126 electronic temperature (Te)
 127 free electron temperature (Tel)

 132 total enthalpy per unit mass (h)
 133 static enthalpy per unit mass (h_s)
 134 total enthalpy per unit volume (rh)
 135 static enthalpy per unit volume (rh_s)

 142 total energy per unit mass (e)
 143 total translational energy per unit mass (et)
 144 total rotational energy per unit mass (er)
 145 total vibrational energy per unit mass (ev)
 146 total electronic energy per unit mass (ee)
 147 total free electron energy per unit mass (eel)
 148 total chemical formation energy per unit mass (eh)
 149 total kinetic energy per unit mass (eU)

 150 velocity in the x-direction (u)
 151 velocity in the y-direction (v)
 152 velocity in the z-direction (w)
 153 velocity magnitude (Vel)
 154 frozen Mach number (M)
 155 frozen sound speed (a)
 156 mean thermal speed (cbar)
 157 normalized velocity in the x-direction (u/Vel)
 158 normalized velocity in the y-direction (v/Vel)

dpcode V3.05.0

16

 159 normalized velocity in the z-direction (w/Vel)

 160 momentum per unit volume in the x-direction (rhou)
 161 momentum per unit volume in the y-direction (rhov)
 162 momentum per unit volume in the z-direction (rhow)
 163 total energy per unit volume (re)
 164 total rotational energy per unit volume (rer)
 165 total vibrational energy per unit volume (rev)
 166 total electronic energy per unit volume (ree)
 167 total free electron energy per unit volume (rel)
 168 total chemical formation energy per unit volume (reh)
 169 total kinetic energy per unit volume (reU)

 170 entropy (S)
 175 pointwise unit radiative emission (Erad)

 180 degree of ionization (zeta)
 181 debye length (lam_D)
 182 Tstar (Tstar)

 194 total energy per unit mass in rotational Eqn. (er_B)
 195 total energy per unit mass in vibrational Eqn. (ev_B)
 196 total energy per unit mass in electronic Eqn. (ee_B)
 197 total energy per unit mass in free electron Eqn. (el_B)

 202 *delta velocity at wall (Del_V)
 204 *delta temperature at wall (Del_T)

 250 velocity in the x-direction normalized by V∞ (u/Vin)
 251 velocity in the y-direction normalized by V∞ (v/Vin)
 252 velocity in the z-direction normalized by V∞ (w/Vin)

 324 limited rotational temperature (Tr_l)
 325 limited vibrational temperature (Tv_l)
 326 limited electronic temperature (Te_l)
 327 limited free electron temperature (Tel_l)

 Viscous Derivative-Based Quantities

 501 *skin friction coefficient (Cf)
 507 *total wall shear stress (tau)

 511 *Stanton number [based on wall enthalpy] (Ch)
 512 *Heat transfer coefficient in mass flux units (Chm)
 517 *Stanton number [based on freestream conditions] (St)

dpcode V3.05.0

17

 518 *Convective heating coefficient (Ct)

 520 radiative equilibrium heat transfer (Qeq)
 521 *total wall heat transfer (qw)
 522 *translational wall heat transfer (qT)
 523 *rotational wall heat transfer (qR)
 524 *vibrational wall heat transfer (qV)
 525 *free electron wall heat transfer (qEl)
 526 *catalytic wall heat transfer (qD)
 527 *velocity wall heat transfer (qU)

 581 *spacing in wall units y+ (yp)
 584 *inner velocity u+ (up)

 591 *blowing velocity through face (vb)
 594 *mass flow rate through face (mdot)
 595 *unit mass flow rate through face (mdotU)

 Aerodynamic Forces and Moments

 600 *total force on a face in all directions
 601 *total force on a face in x-direction (Fx)
 602 *total force on a face in y-direction (Fy)
 603 *total force on a face in z-direction (Fz)
 604 *total force on a face in x-direction per unit area (Fx_a)
 605 *total force on a face in y-direction per unit area (Fy_a)
 606 *total force on a face in z-direction per unit area (Fz_a)

 610 *pressure force on a face in all directions
 611 *pressure force on a face in x-direction (Fx_P)
 612 *pressure force on a face in y-direction (Fy_P)
 613 *pressure force on a face in z-direction (Fz_P)
 614 *pressure force on a face in x-direction per unit area (Fx_Pa)
 615 *pressure force on a face in y-direction per unit area (Fy_Pa)
 616 *pressure force on a face in z-direction per unit area (Fz_Pa)

 620 *viscous force on a face in all directions
 621 *viscous force on a face in x-direction (Fx_V)
 622 *viscous force on a face in y-direction (Fy_V)
 623 *viscous force on a face in z-direction (Fz_V)
 624 *viscous force on a face in x-direction per unit area (Fx_Va)
 625 *viscous force on a face in y-direction per unit area (Fy_Va)
 626 *viscous force on a face in z-direction per unit area (Fz_Va)

 650 *total force coefficient on a face in all directions

dpcode V3.05.0

18

 651 *total force coefficient on a face in x-direction (Cx)
 652 *total force coefficient on a face in y-direction (Cy)
 653 *total force coefficient on a face in z-direction (Cz)

 660 *pressure force coefficient on a face in all direction
 661 *pressure force coefficient on a face in x-direction (Cx_P)
 662 *pressure force coefficient on a face in y-direction (Cy_P)
 663 *pressure force coefficient on a face in z-direction (Cz_P)

 670 *viscous force coefficient on a face in all direction
 671 *viscous force coefficient on a face in x-direction (Cx_V)
 672 *viscous force coefficient on a face in y-direction (Cy_V)
 673 *viscous force coefficient on a face in z-direction (Cz_V)

 700 *total moment on a face in all directions
 701 *total moment on a face in x-direction (Mx)
 702 *total moment on a face in y-direction (My)
 703 *total moment on a face in z-direction (Mz)

 710 *pressure moment on a face in all directions
 711 *pressure moment on a face in x-direction (Mx_P)
 712 *pressure moment on a face in y-direction (My_P)
 713 *pressure moment on a face in z-direction (Mz_P)

 720 *viscous moment on a face in all directions
 721 *viscous moment on a face in x-direction (Mx_V)
 722 *viscous moment on a face in y-direction (My_V)
 723 *viscous moment on a face in z-direction (Mz_V)

 750 *total moment coefficient on a face in all directions
 751 *total moment coefficient on a face in x-direction (Cmx)
 752 *total moment coefficient on a face in y-direction (Cmy)
 753 *total moment coefficient on a face in z-direction (Cmz)

 760 *pressure moment coefficient on a face in all direction
 761 *pressure moment coefficient on a face in x-direction (Cmx_P)
 762 *pressure moment coefficient on a face in y-direction (Cmy_P)
 763 *pressure moment coefficient on a face in z-direction (Cmz_P)

 770 *viscous moment coefficient on a face in all direction
 771 *viscous moment coefficient on a face in x-direction (Cmx_V)
 772 *viscous moment coefficient on a face in y-direction (Cmy_V)
 773 *viscous moment coefficient on a face in z-direction (Cmz_V)

 Debugging/Status Information

dpcode V3.05.0

19

 990 pointwise BC numbers along block edges (ibcp)
 991 net charge [should always be zero] (Qnet)
 992 sum of mass fractions [should always be one] (Csum)
 998 zero (zero)
 999 pointwise residual (res)

 Species Data

The following variables are species-specific data. In each case the
user can choose to extract data for either a subset of the species by
entering just the desired variable numbers, or data for all species
by entering the appropriate “shorthand” number.

 1000 all species densities
 1000+n density of species n (n)

 1200 all species number densities
 1200+n number density of species n (N_n)

 1400 all species mass fractions
 1400+n mass fraction of species n (C_n)

 1600 all species mole fractions
 1600+n mole fraction of species n (X_n)

 1800 all species densities, normalized by ρ∞
 1800+n normalized density of species n (RnD_n)

 3400 all species rotational temperatures
 3400+n rotational temperature of species n (Tr_n)

 3600 all species vibrational temperatures
 3600+n vibrational temperature of species n (Tv_n)

 4000 all species total internal energies per unit mass
 4000+n total internal energy per unit mass of species n (e_n)

 4200 all species translational internal energies per unit mass
 4200+n trans. internal energy per unit mass of species n (et_n)

 4400 all species rotational internal energies per unit mass
 4400+n rotational internal energy per unit mass of species n (er_n)

 4600 all species vibrational energies per unit mass

dpcode V3.05.0

20

 4600+n vibrational energy per unit mass of species n (ev_n)

 4800 all species electronic energies per unit mass
 4800+n electronic internal energy per unit mass of species n (ee_n)

 5000 *all species mass flow rates through surface
 5000+n *mass flow rate through surface of species n (mdot_n)

 5200 *all species mass flow rates through surface [per unit area]
 5200+n *mass flow rate through surface of species n (mdotU_n)

 6000 all species total specific heats at constant volume
 6000+n total specific heat at constant volume of species n (cvx_n)

 6200 all species translational specific heats at constant volume
 6200+n translational specific heat at const. vol. of species n (cvt_n)

 6400 all species rotational specific heats at constant volume
 6400+n rotational specific heat at const. vol. of species n (cvr_n)

 6600 all species vibrational specific heats at constant volume
 6600+n vibrational specific heat at const. vol. of species n (cvv_n)

 6800 all species electronic specific heats at constant volume
 6800+n electronic specific heat at const. vol. of species n (cve_n)

 7000 all species frozen specific heats at constant pressure
 7000+n specific heat at constant pressure of species n (cp_n)

 7200 all species frozen specific heats at constant volume
 7200+n specific heat at constant volume of species n (cv_n)

 8000 all species gas constants
 8000+n gas constant of species n (R_n)

 8200 all species equivalent degrees of freedom [nkT]
 8200+n equivalent degrees of freedom of species n (dof_n)

 8400 all species partial pressures
 8400+n partial pressure of species n (p_n)

 8600 all species mean thermal speeds
 8600+n mean thermal speed of species n (cbar_n)

 8800 all species chemical formation energies per unit mass

dpcode V3.05.0

21

 8800+n formation energy per unit mass of species n (eh_n)

 10000 all species diffusion coefficients
 10000+n diffusion coefficient of species n (D_n)

 10200 all species ambipolar diffusion effectiveness
 10200+n ambipolar diffusion effectiveness of species n (DaC_n)

 10400 all species effective Schmidt numbers
 10400+n effective Schmidt number of species n (Sc_n)

 10800 all species unit diffusion mass fluxes
 10800+n unit diffusion mass flux of species n (MD_n)

Tecplot/Plot3D Zone Specification

Following the ivarp flag are a series of flags that are used to define the extents of desired data
extractions. In general one row of data is used to define each desired extraction. The last line in
this group is the so-called “terminator” line, in which the first entry (iwrt) is set equal to -1.
This terminator line instructs the code to stop reading zone specification information, and thus it
must be present or a runtime error will occur. The flags in the zone output specification lines are
defined as follows:

iwrt

This flag determines whether the zone specification on that line will actually be
extracted by POSTFLOW. Possible settings of iwrt are:

 0 do not extract the data defined by this zone specification
 1 extract the data defined by this zone specification
 -1 terminator line

The user is permitted to enter any number of zone specification lines in the input
deck. However, only those that are “turned on” (iwrt = 1) will actually be
extracted at runtime. In this way the user can set up a default input deck with
multiple zone specification lines for all possible desired output. Then each time
the post-processor is run only the data that are actually required are “turned on”,
the rest are left inactive.

ifac

dpcode V3.05.0

22

Defines the ijk orientation of the surface being extracted. This is used only when
surface-oriented quantities (those marked with an asterisk in the definition of
ivarp above, such as skin friction or heat transfer) are desired for output, and
allows the code to determine which surface to output data to. Possible values of
ifac are:

 0 No face selected. Surface-oriented output will not be printed
 1 i-face
 2 j-face
 3 k-face

 imin,imax,jmin,jmax,kmin,kmax

Integer values that define the extent of the desired extraction in the ijk directions.
Numbering is dependent on the value of interp, but in each case begins with 1.
For example, in the case of a single block 2D grid of size 65×129 grid points
(64×128 cells), the full extent of ijk would be as follows:

 interp = 1 → imin = 1
 imax = 66
 jmin = 1
 jmax = 130

The maximum values in each case are the number of cells in that direction + 2,
since points will be added to the output dataset at the face centers of each grid
boundary when interp = 1.

 interp = 2 → imin = 1
 imax = 65
 jmin = 1
 jmax = 129

The maximum values in each case are the number of points, since for interp =
2 the flow quantities have been interpolated to the existing grid points.

It is not necessary for the user to determine the actual size of each block before
extraction. POSTFLOW recognizes the ``shorthand'' value of -1 to indicate the
maximum possible value in any of the coordinate directions. For example,
specifying imin = 1 and imax = -1 instructs POSTFLOW to extract all i-values
from the given dataset, regardless of the value of interp. Other shorthand
values that can be used are -2 (which is equivalent to the maximum value -1), and
-3 (which is equivalent to the mid-point). Finally, if a plane of data is desired,
simply set the minimum and maximum values in that direction to be the same.
Examples of using the zone specification flags to output datasets will be given

dpcode V3.05.0

23

below. Note that it is not currently possible to extract data with a stride other than
1; ie it is not possible to directly extract every OTHER i and j point from a
dataset.

 bkmin,bkmax

These integer quantities define the minimum and maximum grid block numbers
from which to extract data. As before, a value of -1 indicates the maximum block
number (ie. the last block in the simulation). In this way if the same extraction is
to be performed over multiple blocks it can be defined just once.

 zonetitle

This is an ASCII string surrounded by single or double quotes that will be used as
the zone title if Tecplot output is specified. This can be set to a descriptive value
in order to better define multiple output zones, but it is not necessary. If a zone
title is not desired, zonetitle should simply be set to the empty string (“”).

I/O Filenames

The final section of the POSTFLOW input deck defines input/output filenames. All filenames
must be enclosed in single or double quotes, and may include a relative or absolute pathname if
desired. The first two (fname and pname) are required by POSTFLOW, but the final two
filenames gname and bname) are only read if required.

fname

The name of the restart file to process.

pname

The name of the output file to create (if any). Some output formats echo data to
the screen (STDOUT). In these cases the output filename is not used.

gname

The name of the grid file to process (used only if ingrid ≠ 0).

dpcode V3.05.0

24

 bname

The name of the BC file to process (used only if inbcf ≠ 0).

Extracting Volume or Surface Data

The primary use of POSTFLOW is to extract volume or surface data from the restart file for
further post-processing or visualization. This data can be saved in either plot3d (ouform = 2, 3,
22, 23, 32, 33) or Tecplot (ouform = 5, 6, 25, 26) formats. Plot3d format is a standard CFD
output format that can be read by most commercial post-processing tools, while Tecplot format
is (of course) useful only if further post-processing is to be performed using Tecplot.
POSTFLOW can write Tecplot ASCII (.dat) files as well as binary (.plt) files, although Tecplot
binary output requires linking to the Amtec-provided “tecio.a” (or “tecio64.a”) runtime
library. If this library is not available on your machine, Tecplot binary files cannot be generated.
Gzipped plot3d output (ouform = 32, 33) is generated via a system call to the gzip utility
provided with UNIX and LINUX systems. This option may not be available on Windows
systems.

Volume or surface data can be extracted using zone specification lines defined above, surface
extraction with the iexbc flag, or a combination of the two. Variables desired for output are
specified using the ivarp integer array, as discussed above. This use of POSTFLOW will be
demonstrated here with a pair of examples.

For the first example, assume that a simulation was performed on a five-block 3D volume grid,
and the desired output variables are pressure (ivarp = 110), temperature (ivarp = 120), Mach
number (ivarp = 154), and pointwise residual (ivarp = 999). The ivarp array for this case
is given as:

ivarp
110 120 154 999

If we wish to extract the entire volume of data, this can be accomplished with a single zone
specification line:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'volume'
-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

where we have simply specified, with the help of the -1 shorthand described previously, that we
wish to extract all ijk points from all blocks. The value of ifac is set to zero, indicating that we
are not extracting surface-oriented data. For this example POSTFLOW will generate five output
zones, which will contain the entire volume. Each zone will be called “volume” if a Tecplot
output file format is selected. The second line is the required terminator, which instructs
POSTFLOW to stop reading zone specification lines.

dpcode V3.05.0

25

Continuing with this example, let us further assume that all blocks have a body surface at j = 1,
and that these five surfaces completely define the body. In this case we can extract the entire
body surface with the following line:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 1, 2, 1, -1, 1, 1, 1, -1, 1, -1 'body'
-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

where we have extracted the j = 1 surface from all blocks (jmin = jmax = 1), and labeled the
resulting zones “body”. In this case we have also set ifac = 2, indicating that a j-surface is
being extracted. As stated previously, the value of ifac is important only when derivative-
based quantities are selected for output.

Now, assume further that the exit (outflow) plane of the problem can be completely defined as
the imax surface of block #5. Extracting this surface is accomplished by the following
specification:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 1, 1, -1, -1, 1, -1, 1, -1, 5, 5 'outflow'
-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

If desired, all of these zone specification lines can be combined in a single input deck, and they
can be selectively activated or inactivated each time POSTFLOW is run using the iwrt flag.
For example, the following lines:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 0, 0, 1, -1, 1, -1, 1, -1, 1, -1 'volume'
 1, 2, 1, -1, 1, 1, 1, -1, 1, -1 'body'
 1, 1, -1, -1, 1, -1, 1, -1, 5, 5 'outflow'
-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

define all three output datasets discussed for this example, but since iwrt = 0 for the first
specification only the body and outflow datasets will be generated when POSTFLOW is run.

For the second example we consider a four block grid, in which the body surface is defined by
the imin plane of block #1, the kmax plane of block #3, and the imin and jmax planes of
block #4. In this case, if we wish to extract the entire body surface using zone specification lines
we must enter:

iwrt ifac imin imax jmin jmax kmin kmax bkmin bkmax zonetitle
 1, 1, 1, 1, 1, -1, 1, -1, 1, 1 'surface'
 1, 3, 1, -1, 1, -1, -1, -1, 3, 3 'surface'
 1, 1, 1, 1, 1, -1, 1, -1, 4, 4 'surface'
 1, 2, 1, -1, -1, -1, 1, -1, 4, 4 'surface'
-1, 0, 1, -1, 1, -1, 1, -1, 1, -1 'terminator'

dpcode V3.05.0

26

This approach will work, but it is cumbersome to set up, and requires the user to pre-determine
the locations of all surface sub-zones in the simulation. An alternative is to use the iexbc flag
to extract the body surface in a single step. Assuming that the body surface is catalytic and in
radiative equilibrium (BC = 26), simply setting iexbc = 26 will automatically extract all four
zones from the restart file.

Remember that the iexbc flag can be used together with the zone specification flags in a single
POSTFLOW run. By using a combination of these methods it should be possible to extract
almost any desired subset of the flowfield.

Finally, it is possible to use POSTFLOW to view the coordinates of the grid dummy cells if
desired. This is accomplished by setting interp = 0 and ivarp = 0. This is provided mainly
for debugging purposes, since generally the dummy cell information is meant to be transparent to
the end user.

Extracting Zone Minima or Maxima

POSTFLOW can also be used to extract the minimum or maximum values of selected output
variables in each output dataset, and, if desired, the ijk location of these values. There are two
separate output formats provided to accomplish this. The first, ouform = 7, will display a listing
of the minimum and maximum values of the selected variables in each output zone to STDOUT.
The second option, ouform = 17, displays a longer listing to STDOUT, which includes the ijk
locations of these maximum and minimum values in the zone. Note that the ijk location is
computed relative to the output zone. If absolute ijk values are required the entire volume should
be selected as output.

In each case the user specifies the desired output data using the ivarp array, and the output is
written to STDOUT. An output datafile is not generated when min/max data are requested.

An example of the output of POSTFLOW is shown here for ouform = 7:

block # 1: nx = 32; ny = 16; nz = 64
 zone t=BC19 i= 34 j= 1 k= 66

 Zone Maximum and Minimum Values:
 p [max] = 5.0043E+04; [min] = 3.5910E+01
 T [max] = 1.5345E+04; [min] = 1.2807E+02
 M [max] = 3.2322E+01; [min] = 0.0000E+00

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9

 block # 2: nx = 48; ny = 64; nz = 64
 zone t=BC19 i= 50 j= 1 k= 66

dpcode V3.05.0

27

 Zone Maximum and Minimum Values:
 p [max] = 4.4431E+04; [min] = 3.5910E+01
 T [max] = 1.4203E+04; [min] = 1.2807E+02
 M [max] = 3.2322E+01; [min] = 0.0000E+00

Extracting Integrated Surface Data

Another use of POSTFLOW is the integration of surface quantities. This is exercised by setting
ouform = 8, and ensuring that all output datasets define surfaces (either with iexbc or the
ifac flag). When this option is specified, POSTFLOW will compute the panel area of each
surface face in each valid output zone, and multiply this panel area by the desired integrated
output variable(s). This value is then summed over each surface zone, and the result is presented
on STDOUT. Results are shown for each zone, and a sum over all zones is also computed. If any
of the symmetry flags (imrx, imry, imrz) have been selected, the summed output values are
adjusted as discussed above to account for the symmetries of the problem. This option works
only with interp = 11. The most common use of this option is the computation of integrated
aerodynamic forces or moments.

At this time the only variables that can be extracted as integrated surface quantities are the face
area (ivarp = 23), aerodynamic forces (ivarp = 600:673), aerodynamic moments (ivarp =
700:773), heat transfer (ivarp = 520:527), and mass flow rates (ivarp = 594:595). Any other
selected variables will be removed from the list if they are selected when ouform = 8.

If aerodynamic forces are selected and iwind is set to either 1 or 2, output forces will be rotated
into the wind coordinate system based on either the internal (iwind = 1) or provided (iwind =
2) velocity cosines, and will be output as lift, drag, and side forces in addition to the xyz forces
otherwise reported. Note that this option assumes that the employed grid is in standard aircraft
coordinates.

An example of the output for ouform = 8 is shown here:

block # 1: nx = 32; ny = 16; nz = 64
 ==> extracted derivative data from the KMIN-surface
 ==> derivative data computed using full viscous fluxes
 zone t=BC26 i= 32 j= 16 k= 1

 Fx = 9.872234694840E+02 (N)
 Fy = 3.249055280159E+02 (N)
 Fz = -3.865734146780E+02 (N)

 processing grid variable 1 2 3
 processing flow variable 1 2 3 4 5 6 7 8 9

 block # 2: nx = 48; ny = 64; nz = 64

dpcode V3.05.0

28

 ==> extracted derivative data from the KMIN-surface
 ==> derivative data computed using full viscous fluxes
 zone t=BC26 i= 48 j= 64 k= 1

 Fx = 2.919904481514E+03 (N)
 Fy = 1.605495325835E+04 (N)
 Fz = -9.258734449289E+03 (N)

 Integrated Surface Quantities
 Summary Over All Output Surfaces:
 XZ-Symmetry Enforced During Final Summation

 Fx = 7.814255901995E+03 (N)
 Fy = 0.000000000000E+00 (N)
 Fz = -1.929061572793E+04 (N)

Extracting Freestream Data

POSTFLOW provides two methods of extracting freestream data from the restart file. The first
option, ouform = 10, will output an informational listing to STDOUT, displaying the
freestream quantities requested and SI units of each. The second option, ouform = 110, displays
a tabular listing of freestream data, which is better suited for direct import to a spreadsheet
application.

In each case the user specifies the desired output data using the ivarp array, and the output is
written to STDOUT. An output datafile is not generated when freestream data are requested.
Freestream data are tabulated and output for each grid block in the simulation, regardless of any
surface extraction or zone specification flags that have been set. Separate freestream data are
presented for each grid block, since DPLR allows multiple freestream specifications to be
applied when a simulation is run. However, in most cases all blocks will have the same
freestream information.

As an example, for the “Neptune” sample problem, if we wish to extract freestream pressure,
temperature, Mach number, and unit Reynolds number from the dataset we would specify:

ivarp
110 120 154 58

in the input deck. A portion of the output of POSTFLOW for this case is presented here for
ouform = 10:

block # 1: nx = 32; ny = 16; nz = 64

 Freestream Quantities:

dpcode V3.05.0

29

 Block # 1

 p = 3.591044259306E+01 (Pa)
 T = 1.280700000000E+02 (K)
 M = 3.232180261501E+01 ()
 Re/L = 3.151858720834E+05 (1/m)

 block # 2: nx = 48; ny = 64; nz = 64

 Block # 2

 p = 3.591044259306E+01 (Pa)
 T = 1.280700000000E+02 (K)
 M = 3.232180261501E+01 ()
 Re/L = 3.151858720834E+05 (1/m)

Extracting Data for Processing with Moment

POSTFLOW can now directly compute moments or moment coefficients. However, for
historical reasons a utility called Moment is provided as part of the DPLR package that can also
do this computation quite easily. Moment requires as input forces per unit area at each cell center
on the surface of the vehicle; either total forces (ivarp = 604:606), pressure forces (ivarp =
614:616) or viscous forces (ivarp = 624:626). This is exercised by setting ouform = 11, and
ensuring that all output datasets define surfaces (either with iexbc or the ifac flag). If any of
the symmetry flags (imrx, imry, imrz) have been selected, the summed output values are
adjusted as discussed above to account for the symmetries of the problem. This option works
only with interp = 11.

When this option is run, plot3d grid and function files will be created, along with a file
“Moment.inp”, which is the input deck for the Moment utility. Moment is then run simply from
the command line by typing

 Moment < Moment.inp

A sample of the output from the Moment script is given here:

running Moment version 3.05.0

 Moment Center:
 Xm = 0.000000E+00 (m)
 Ym = 0.000000E+00 (m)
 Zm = 0.000000E+00 (m)

dpcode V3.05.0

30

 Reference Values:
 lref = 3.650000E+00 (m)
 aref = 4.500000E+00 (m^2)
 qdyn = 2.784862E+03 (Pa)

 Vehicle Symmetries:
 xy-plane

 Wetted Area:
 Area = 0.000000E+00 (m^2)

 Force components:
 Fx = 1.777037E+07 (N) ; Cx = 1.418013E+03
 Fy = -1.165808E+04 (N) ; Cy = -9.302740E-01
 Fz = 0.000000E+00 (N) ; Cz = 0.000000E+00

 Moment components:
 Mx = 0.000000E+00 (N*m) ; Cmx = 0.000000E+00
 My = 0.000000E+00 (N*m) ; Cmy = 0.000000E+00
 Mz = -6.500303E+04 (N*m) ; Cmz = -1.421099E+00

Note that at this time there is no error checking in place to ensure that this output format is used
correctly. In other words, it is not an error to select other variables as output, but the results
generated by the Moment utility will be incorrect unless forces per unit area are selected.

Extracting NaN's from the Dataset

The final use of POSTFLOW is to extract the locations of any NaN's in the restart file. This is
selected using ouform = 18, and is provided solely for debugging purposes. The intended
purpose is to stop the simulation after a NaN has been generated, write out the restart file, and
then post-process the file to determine where the NaN occurred. Note that once a NaN is
generated by DPLR, it will quickly be convected throughout the solution domain, so if it is
desired to view the location where the NaN first occurred it is important to stop the simulation
and write a restart file at the conclusion of the iteration in which the NaN was first generated
(this is typically the iteration PRIOR to when the residual itself becomes NaN).

Note that different machine architectures (and FORTRAN compilers) treat NaN's differently. In
many cases generation of a NaN is a fatal error that will cause the program to abort immediately.
In this case it is not possible to have a NaN in a restart file, since DPLR would have aborted
before the value was written. However, it is usually possible to alter this behavior by recompiling
with the appropriate compiler flags, if desired. Consult the man pages or reference manual for
your compiler for more information.

dpcode V3.05.0

31

In practice this is a rarely used option, but it can be handy to locate the occasional evil bug. The
output data consists of a list of ijk locations of all NaN's in the volume, listed block-by-block to
STDOUT.

dpcode V3.05.0

32

APPENDIX: Release Notes for Version 3.05.0

UPGRADES:

v3.05.0 -- add new output format 11 for offline Moment calculations
 -- add extraction of surface BC intersections
 -- add variables 67,127,147,167,197,327
 -- move old variables 147,148,167,168
 -- add moment extraction (variables 700:773) [Matt MacLean, CUBRC]
 -- add forces in wind coordinate system

BUGLIST:

v3.05.0 -- FIXED BUG: output millikan.vib file unreadable (readdeck)
 -- FIXED BUG: edge heat transfer bad in cases where two surfaces abut (interpol)
 -- FIXED BUG: not writing correct catalysis.surf file for case where material map

present (readdeck)
 -- FIXED BUG: supersonic Pitot pressure formula was wrong (writeflow)

MODLIST:

v3.05.0 -- add new output format 11 for Moment calculations (readinp,writeflow)
 -- mods for multiple temp range emissivity (readdeck,writeflow)
 -- add uncoupled Spalart-Almaras (parseivar,writeflow,readdeck)
 -- remove variable ivarp=76 (writeflow,parseivar,setupcvar)
 -- better memory error trapping (readdeck)
 -- add Chapman viscosity routine (readdeck,premake)
 -- add extraction of surface BC intersections (premake,readinp)
 -- minor mods for electronic energy stuff (readdeck, surface, rdfiles, writeflow, fullvis,

getsize)
 -- add variables 67,127,147,167,197,327 (setupcvar,writeflow)
 -- move old variables 147,148,167,168 (setupcvar,writeflow)
 -- eliminate getef298 routine (readdeck)
 -- add moment extraction capability [Matt MacLean, CUBRC] (main, writeflow,

setupcvar, parseivar)
 -- add forces in wind coordinate system (writeflow)

